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Abstract— In this paper a new method for noise cancellation 

in a class of wavelet based multiresolution controllers is 

proposed. Noise cancelation is based on hard thresholding of 

detail signals in the decomposition stage of the controller. We 

took advantage of the fact that noise mainly affects high 

frequency contents of the error signal that is used by the 

controller, and used hard thresholding to filter their effect in 

the subsequent control output. The resulting controller 

outperforms conventional PID and multiresolution PID 

controllers in closed-loop feedback system design. We tested the 

performance of the new controller by implementing a n integral 

plus dead time process used integral of the time-weighted 

absolute error criteria (ITAE) to tune and compare different 

controller designs. 

I. INTRODUCTION 

The wavelet transform, which was first introduced by 
Mallat [1] more than two decades ago, has been evolved to a 
useful technique for signal and image processing [2,3], 
particularly in image compression and denoising [4]. More 
recently, however, Parvez and Gao [5] used wavelet 
multiresolution analysis in the design of a new class of 
controllers which they refered to as multiresolution 
proportional-integral-derivative (MRPID) controllers. This 
MRPID decomposes error between the output and set point 
signals into an approximation and a group of detail signals, 
which are separated by the frequency information that they 
contain. After weighting each signal component with an 
appropriate gain, the control signal as a weighted 
combination of components. Khan and Rahman [6] 
successfully implemented MRPID design to control a 
permanent magnet AC motor system. More recently, the 
same authors implemented MRPID on a benchmark thermal 
system [7]. The wavelet property allows decomposition of 
the signal in both time and frequency domains 
simultaneously. Short time intervals reveal high frequency 
components of the signal. On the other hand, long time 
intervals reveal low frequency components of the signal. The 
online decomposition of the frequency components can be  a 
powerful technique that can have many practical applications 
ranging form modeling and control of electromechanical 
systems, such as electric motor drives, to identification of 
unknown systems.  

In most practical situations, noise is an inevitable player 
in the control loop that can interfere with the control signal 
and deteriorate the quality of the output in a closed-loop 
system, or even cause unstable behavior. Thus, it is essential 
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to take into account the effect of noise in both identification 
and control of a system. The noise in a closed loop feedback 
system can stem from different sources, including 
measurement devices, electrical and mechanical drives and 
even the plant process. In high precision control, designing a 
controller that can remove the noise is crucial in guaranteeing 
the performance. For example in [8] position accuracy of a 
micro actuator is improved by rejecting narrowband 
disturbances at bandwidth that were higher that the servo 
bandwidth of the process. Similarly, Parvez and Gao [5] 
proposed that decreasing the gain of low scale component of 
the error signal could improve the noise rejection in the 
subsequent control signal. 

  Previously, thresholding has been used for reducition the 
noise level in images. For instance, Donoho and Johnston [9] 
used SureShrink thresholding method for denoising images. 
We took a similar approach in our design wavelet based 
multiresolution control and applied a threshold to the 
amplitude of detail components of error signal and 
subsequently suppressed the effect of noise in the system. 

This paper is organized in seven sections. In section two, 
a brief description of wavelet multiresolution analysis is 
provided. In section three, the formulation of MRPID as 
proposed by [5]  is described, and the noise rejection scheme 
as well as modified control design is provided in sections 
four and five. Next, in section six the performance of the 
proposed controller is evaluated in an integral plus dead time 
process model, and finally some conclusions are drown in 
section seven.  

II. MULTIRESOLUTION ANALYSIS 

The multiresolution analysis of a discrete signal is based 
on decomposing the signal into one approximation and one or 
more detail signals in different scales. As a case in point, the 
multiresolution decomposition of a discrete signal 𝑓 with 𝑎 
samples can be presented in the following form. 

𝑓 → (𝐴
2−𝐽
𝑑 𝑓, (𝐷2𝑗𝑓)

−𝐽<𝑗<0
) (1) 

In (1), J represents the level of signal decomposition, 

𝐴
2−𝐽
𝑑

𝑓 represents the approximation vector, and 𝐷2𝑗𝑓 

represents the detail vector in different scales ranging from 
resolution 0 to resolution J. At each level, passing the current 
approximation vector through a low pass filter derives the 
next approximation vector. A scaling function defines the 
low pas filter for each level. Similarly, the detail vector at 
each level is derived by passing the current approximation 
vector through a high pass filter, which is defined by the 
wavelet function at each level. Because the transfer functions 
for these two filters are complex conjugates, the resulting 
decompositions are orthogonal. In other words, each vector 
contains specific information about the original signal that 
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cannot be found in other vectors. Single layer multiresolution 
decomposition of a discrete signal is depicted in fig. 1. 

The impulse response for the high pass and the low pass 
filters at each decomposition stage can be defined as 

ℎ𝑖𝑔ℎ 𝑝𝑎𝑠𝑠 𝑓𝑖𝑙𝑒𝑡𝑒𝑟: 𝑔(𝑛) = 〈𝜓2−1(𝑢), 𝜙(𝑢 − 𝑛)〉 (2) 

𝑙𝑜𝑤 𝑝𝑎𝑠𝑠 𝑓𝑖𝑙𝑡𝑒𝑟:  ℎ(𝑛) = 〈𝜙2−1(𝑢), 𝜙(𝑢 − 𝑛)〉 (3) 

In Eq. 2 and 3, ψ(u) and ϕ(u) are wavelet and scaling 
functions, respectively. Repeating the same process for the 
resulting approximation vector will result in the next level 
decomposition of the signal. The decomposition process can 
continue to infinity, but in practice the application restricts 
the level of signal decomposition. 

Reconstruction of the original signal can be done in two 
ways, either by passing approximation and details vectors 
through the pair of conjugate filters namely ℎ′ and 𝑔′ or by 
creating approximation and detail signals. Combining these 
signal results in an output signal, namely reconstructed 
signal, with the same properties as the input signal. The 
process of creating the decomposition signals for one layer 
multiresolution analysis is depicted in Fig. 2. 

The reconstruction process shown if Fig.2 results in 
approximation and detail signals that have the same length as 
the original signal. This is because inserting zeros 
compensates for the difference in length between input signal 
and approximation vector or detail vectors at decomposition 
stage. It is important to note that the wavelet based 
Multiresolution decomposition of a signal is a linear 
operation, and the subsequent reconstruction of the original 
signal is linear. Fig.3 shows different ways to reconstruct the 
input signal at different level of decomposition. 

III. MULTIRESLUTION BASED CONTROLLER DESIGN 

Proportional-Integral-Derivative controllers (PID) are 
widely used for set point tracking, disturbance rejection, and 
noise rejection in control systems design. Typically, the PID 
controller has the following form.   

𝑃(𝑠) = 𝐾𝐶(1 + 1
𝜏𝐼𝑠⁄ + 𝜏𝐷𝑠) × 𝐸(𝑠) (4) 

The integral operator and proportional terms operate in 
low and medium frequencies of the error signal whereas the 
derivative term operates in high frequency component of the 
error signal. 

 

 

 

Fig. 1. Single layer decomposition of discrete signal f, after passing the 
original signal through a high pass and low pass filter, the two resulting 
vector are down sampled by two to derive the approximation and detail 
vectors. 

 

Fig. 2. Creating approximation and detail signals from approximation and 
detail vectors. After upsampling of vectors, they are passed through a pair 

of conjugate reconstruction filters to produce the approximation and detail 

signals. 

Frequency division was achieved by decomposing the 
error signal into different approximation and detail signal. 
The resulting approximation signal captured low frequency 
component of the error signal. On the other hand, the detail 
signals revealed information about the medium to high 
frequencies. These signals were then weighted based on the 
desired performance of the system. Combining the weighted 
approximation and detail signals resulted in the control signal 
that was applied in the control loop. For the MRPID 
controller with three level of decomposition, the control 
signal U is generated by combing one approximation and 
three detail signals as shown in Eq. 5. 

𝑈 = 𝐾𝐻𝐴2−3 + 𝐾𝑀2
𝐷2−3 + 𝐾𝑀1

𝐷2−2 + 𝐾𝐿𝐷2−1  (5) 

In Eq. 5, 𝐾𝐻 , 𝐾𝑀2
, 𝐾𝑀1

, 𝐾𝐿  are the controller’s gains at 

different scales. For different levels of decompositions, the 

controller has different number of gains. Two factors must 

be considered in designing the controller. 
 

A.  Type of wavelet and scale functions 

Different types of wavelet and scaling function can be used 
in decomposition and reconstruction stages. Each family of 
functions has its own characteristics and specific application. 
Parvez and Gao in [5] used wavelet function family of 
Daubechies of order 4 in the design of the controller. 

B. Level of decomposition 

The level of decomposition is an important factor for 

designing the controller in order to find the suitable 

resolution in both time and frequency domains. Eq. 6 can be 

used for determining the suitable level of the decomposition 

[5]. 

𝑁 ≤ 𝑙𝑜𝑔2 (
2 × 𝐿

𝐹 − 1
+ 1) 

(6) 

In Eq. 6, N represents the numbers of controller’s gains. 

In addition, L is the size of the buffer and F is the size of the 

filter, which is used for decomposition. 
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Fig. 3. Different levels of reconstructions from an input signal f. In each 
layer, the approximation signal can be combined with detail signals at 
current and previous levels to produce the reconstructed signal. 

IV. NOISE REJECTION IN MULTIRESOLUTION PID CONTROL 

Parvez and Gao in [5] proposed an approach for noise 
rejection in the multiresolution PID controller. They reduced 
the effect of high frequency noise in the output signal by 
reducing the gain values for the lowest scale. This method 
reduced the noise dependent fluctuations of output compared 
to the traditional PID controllers, yet it failed to remove high 
frequency fluctuations. These high frequency fluctuations can 
deteriorate the control system performance and lifetime. In 
this paper, we propose a new method for attenuating these 
fluctuations. The method is based on thresholding of error 
signal after the decomposition stage. The resulting controller 
shows improved performance in cancelling of the noise in 
different frequency bands. The computations to achieve the 
noise rejection are minimal, and are described below. 

A. Thresholding 

Consider a signal 𝑥(𝑛) which is contaminated by noise 
signal 𝑤(𝑛). 𝑤(𝑛) can be created by many sources, including 
measurement and environmental noises.  Generally, 𝑤(𝑛) is 
considered to be white noise which is statistically 
independent from 𝑥(𝑛). As a result, we can define a noise 
contaminated signal 𝑓(𝑛) as follows. 

𝑓(𝑛) = 𝑥(𝑛) + 𝑤(𝑛) (7) 

The purpose of denoising is to find an estimate of signal 
𝑓(𝑛), namely 𝑓’(𝑛), such that 𝑓’(𝑛) is close to 𝑥(𝑛), i.e. the 
limit of the error between sample of 𝑥(𝑛) and 𝑓’(𝑛) 
approches zero. Here we use wavelet multiresolution analysis 
in order to find 𝑓’(𝑛). Consider the signal 𝑓′(𝑛) with the 
wavelet multiresolution decomposition shown in Eq. 8. 

𝑓′ → (𝐴
2−𝐽
𝑑 𝑓′, (𝐷2𝑗𝑓′)−𝐽<𝑗<0) (8) 

The noise mainly affects the detail vectors in the 
multiresolution analysis, or higher frequency bands in the 
original signal. Taking this fact into account, we can 
manipulate detail vector in order to reduce the effect of noise 
in the reconstructed signal. Previously, Dohono and 
Johnstone in [9] proposed a thresholding method for 
estimating f′(n) close to noise free signal x(𝑛). 

Thresholding method suggests two means for denoising 
the f′(n) signal, hard thresholding and soft thresholding. In 
both methods it is assumed that the noise affects detail 
vectors and the changes in the value of the detail vector due 
to noise is much smaller than that of original signal. 
Consequently, noise can be attenuated by setting the 
coefficients that have values smaller than a specified 
threshold to zero. In this paper we prefer to use hard 
thresholding method for controller design. Unlike hard 
thresholding, in soft thresholding all coefficients are 

subtracted by threshold value, which adds a bias to the all 
coefficients. As a result, there is a need for tuning the 
controller’s gains so that the performance of the system 
remains the same in presence of the bias. The hard 
thresholding method has the following form. 

𝑇𝛿
ℎ(𝑥) = {

𝑥          |𝑥| > 𝛿
0          |𝑥| ≤ 𝛿

 
(9) 

Selection of the threshold value δ is critical in effective 
denoising of the noise in the controller. Here we use a 
combination of Stein’s Unbiased Estimate of Risk , or SURE 
method, [9] and Minimax performance which is a fixed 
threshold [10]. The reason for using the combination of the 
two method is that in some cases the signal to noise ratio is 
small and the SURE method maybe unable to cancel noise 
content of the signal, so there is a need for an alternative 
method for the selection of threshold value. 

V. DESIGN OF THE MULTIRESOLUTION PID CONTROL WITH 

ENHANCED NOISE REJECTION 

Here, we design the control structure for the wavelet 
Multiresolution PID controller with enhanced noise rejection 
capability. The controller structure is shown in Fig. 4. 

In order to achieve noise rejection, the detail signals pass 
through a thresholding block after the decomposition stage. 
The output detail signals are then weighted and combined 
with the approximation signal in order to form the 
reconstructed control action signal. In contrast to the noise 
cancelling method proposed by Parvez and Gao [5], the noise 
can be attenuated in a wide range of frequencies without the 
need to change the gains for detail signals. This is due to the 
fact that in hard thresholding method only the detail 
coefficients with small values are manipulated. These 
coefficients are largely caused by noise presented in the 
system rather than system output. Consequently, using the 
thresholding has little influence on controller’s performance. 
On the other hand, in the controller structure proposed in [5], 
changing the gains for reducing the noise effect on detail 
signals may lead to the poor performance of the controller. In 
addition, by using the thresholding method high frequency 
spikes can be obliterated more efficiently. If left unchanged, 
these spikes in control signal could potentially shorten the 
efficient lifespan of actuator systems and affect the stability 
of the closed-loop system. In the next section, we incorporate 
our proposed controller on a typical model in order to 
evaluate its performance. 

VI. SIMULATION RESULTS 

In this section, we implement our proposed controller on 
a typical integral plus dead time system to assess the 
performance of the controller . The system for simulation was  

 

Fig. 4. Controller structure of the wavelet Multiresolution PID controller 

with enhanced noise rejection. 
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previously used in [11] to evaluate the performance of their 
method. The transfer function of the plant system is as 
follows. 

P(s) = 0.0506e−6s

𝑠⁄  (10) 

In [11], an enhanced PID controller for this model is 

proposed. Eq. 11 shows the controller structure. 

𝐺𝑐 = 𝐾𝑐 (1 +
1

𝜏𝐼𝑠

+ 𝜏𝐷𝑠)
1 + 𝑎𝑠

1 + 𝑏𝑠
 

(11) 

In the Eq. 11, five different gains need to be tuned for the 
controller. Shamsuzzoha et al. [11] used the integral of time-
weighted absolute error criteria (ITAE) in order to find the 
best controller’s gains. Here, we use the same criteria for 
tuning both multiresolution PID controller and our proposed 
controller. Table (1) shows ITAE values for three controllers. 
Fig. 5 shows the set point response of the controllers. 

Next we introduce noise to the system. The noise model 
is a band-limited white noise with the sampling time of 0.05 
seconds. This noise is added to the system as a measurement 
noise after the system reaches its steady state. Fig. 6 shows 
the response for three closed-loop systems after the onset of 
noise in the system.  

It is evident from the shape of the outputs that 
thresholding improves noise rejection for the closed-loop 
system. Moreover, high frequency fluctuations as well as low 
frequency fluctuations are removed from the response when 
the proposed controller is used in the loop.  

 

Table 1. ITAE value for three controllers 

Control method ITAE value 

Shamsuzoha and Lee 113.24 

MRPID 109.77 

Proposed controller 112.91 

 

 

Fig. 5. Set point response for three controllers. They all exhibit fairly the 

same response to the input signal. 

 

 

Fig. 6. Response closed-loop system with different controllers in the 
presence of measurement noise 

Based on Fig. 7, in low frequencies, two controllers have 
fairly similar responses. But as we move to higher 
frequencies, our proposed method has lower power contents. 
This means that in higher frequencies the controller act as a 
low pass filter, thus removes high frequency noises from 
output. 

Control actions signals are also important in a controller 
design. Two factors should be taken into account, first one is 
the highest and the lowest amplitude of the output and the 
second one is the rate the control signals changes from one 
value to another. We investigate these factors in fig. 8. 

Fig. 8 represents an important characteristic of the 
proposed method and that is the small slew rates of the 
control signal. In fact, the control signal for MRPID may not 
be achievable in reality due to high slew rate of control 
signal. In contrast, the control signal for the proposed method 
is slow enough to be produced by conventional actuators. The 
signal has smaller amplitudes compared to the MRPID case. 
As a result, less amount of energy is needed to remove the 
noise. This also enhances the performance of the controller 
and is cost effective. 

 

Fig. 7. Power spectral density estimate of Multiresolution PID controller 

and the proposed method. 
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Fig. 8. Control signals for Multiresolution PID controller and the proposed 

controller. 

To clarify the improvement in the performance of the 
controller, discrete Fourier transform for control signals is 
computed. Fig. 9 shows the results. 

As Fig. 9 shows, in low frequencies two control signals 
have similar behavior. However, in higher frequencies our 
proposed method has smaller amplitude in comparison to 
Multiresolution PID controller. This indicates a smoother 
control signal, which is essential for the optimal performance 
of the controller as well as actuators. 

VII. CONCLUSION 

In this paper, a new method for enhanced noise canceling 
ability in Multiresolution wavelet PID controllers is 
investigated. The performance of the method is evaluated by 
comparing systems outputs and their corresponding power 
spectra. In addition, control signal as well as frequency 
content for each signal is depicted and the superiority of the 
new method is examined. 

APPENDIX 

The controller settings for the simulations in this paper 
are as follows: Shamsuzzoha and Lee: (𝐾𝑐 = 1.079, 𝜏𝐼 =
4.0, 𝜏𝐷 = 1.5, 𝑎 = 13.197, 𝑏 = 1.4414), multiresolution 
PID (𝐾𝐻 = 1.5, 𝐾𝑀2

= 20, 𝐾𝑀1
= 20, 𝐾𝐿 = 0),  Proposed:  

(𝐾𝐻 = 1.5, 𝐾𝑀2
= 20, 𝐾𝑀1

= 20, 𝐾𝐿 = 0). 

 

Fig. 9. Frequency contents of the control signal for Multiresolution PID and 

proposed method 
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